[SPARK-24563][PYTHON] Catch TypeError when testing existence of HiveConf when creatin...
authorLi Jin <ice.xelloss@gmail.com>
Thu, 14 Jun 2018 20:16:20 +0000 (13:16 -0700)
committerMarcelo Vanzin <vanzin@cloudera.com>
Thu, 14 Jun 2018 20:16:20 +0000 (13:16 -0700)
‚Ķark shell

## What changes were proposed in this pull request?

This PR catches TypeError when testing existence of HiveConf when creating pyspark shell

## How was this patch tested?

Manually tested. Here are the manual test cases:

Build with hive:
```
(pyarrow-dev) Lis-MacBook-Pro:spark icexelloss$ bin/pyspark
Python 3.6.5 | packaged by conda-forge | (default, Apr  6 2018, 13:44:09)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
18/06/14 14:55:41 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.4.0-SNAPSHOT
      /_/

Using Python version 3.6.5 (default, Apr  6 2018 13:44:09)
SparkSession available as 'spark'.
>>> spark.conf.get('spark.sql.catalogImplementation')
'hive'
```

Build without hive:
```
(pyarrow-dev) Lis-MacBook-Pro:spark icexelloss$ bin/pyspark
Python 3.6.5 | packaged by conda-forge | (default, Apr  6 2018, 13:44:09)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
18/06/14 15:04:52 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.4.0-SNAPSHOT
      /_/

Using Python version 3.6.5 (default, Apr  6 2018 13:44:09)
SparkSession available as 'spark'.
>>> spark.conf.get('spark.sql.catalogImplementation')
'in-memory'
```

Failed to start shell:
```
(pyarrow-dev) Lis-MacBook-Pro:spark icexelloss$ bin/pyspark
Python 3.6.5 | packaged by conda-forge | (default, Apr  6 2018, 13:44:09)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
18/06/14 15:07:53 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
/Users/icexelloss/workspace/spark/python/pyspark/shell.py:45: UserWarning: Failed to initialize Spark session.
  warnings.warn("Failed to initialize Spark session.")
Traceback (most recent call last):
  File "/Users/icexelloss/workspace/spark/python/pyspark/shell.py", line 41, in <module>
    spark = SparkSession._create_shell_session()
  File "/Users/icexelloss/workspace/spark/python/pyspark/sql/session.py", line 581, in _create_shell_session
    return SparkSession.builder.getOrCreate()
  File "/Users/icexelloss/workspace/spark/python/pyspark/sql/session.py", line 168, in getOrCreate
    raise py4j.protocol.Py4JError("Fake Py4JError")
py4j.protocol.Py4JError: Fake Py4JError
(pyarrow-dev) Lis-MacBook-Pro:spark icexelloss$
```

Author: Li Jin <ice.xelloss@gmail.com>

Closes #21569 from icexelloss/SPARK-24563-fix-pyspark-shell-without-hive.

python/pyspark/sql/session.py

index e880dd1..f1ad6b1 100644 (file)
@@ -567,14 +567,7 @@ class SparkSession(object):
                     .getOrCreate()
             else:
                 return SparkSession.builder.getOrCreate()
-        except py4j.protocol.Py4JError:
-            if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive':
-                warnings.warn("Fall back to non-hive support because failing to access HiveConf, "
-                              "please make sure you build spark with hive")
-
-        try:
-            return SparkSession.builder.getOrCreate()
-        except TypeError:
+        except (py4j.protocol.Py4JError, TypeError):
             if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive':
                 warnings.warn("Fall back to non-hive support because failing to access HiveConf, "
                               "please make sure you build spark with hive")